Sequence of method calls
validate -> predict
The first query allows you to determine if the image is suitable for analysis. The second request is directly checking the image. If you submit an image of anything at the entrance to the prediction, then this image will be recognized as some kind of skin formation.
Information about requirements to photo & userflow example available
on the video below
POST /validate
URL: https://api.skiniver.com/validate
Description:
Checks the photo for suitability for recognition
Curl:
curl –location –request POST ‘https://api.skiniver.com/validate‘ \
–header ‘Authorization: token‘ \
–form ‘img=”@img.jpg”‘
Request
–header ‘Authorization: token‘
Params
img * file – image presented as file
Response:
{ “isgood”: “false” *required field // a field indicating how the validation went, if you received it false, you need to ask the user to take a photo again. |
POST /predict
URL: https://api.skiniver.com/predict
Description:
Diagnosis of the presence of a skin disease
Curl:
curl –location –request POST ‘https://api.skiniver.com/predict‘ \
— header ‘Authorization: token‘ \
— form ‘img=”@img.jpg”‘
Request
–header ‘Authorization: token’
–header ‘Locale: en’ /// “ru”, “en”
Params
img * file()
lang string
Response:
{ "atlas_page_link":"https://shatiko.pp.ua/dermatlas/benign-formations/id23-benign-nevus/", *required field // atlas article link "check_datetime":"2021-01-14T16:04:19+0000", *required field //check time "class":"Benign nevus", *required field // disease name "class_raw":"benign_nevus", *required field "colored_s3_url":"https://cdn.skiniver.com/colored/7/2/fc65b2bd-bfb6-4bc5-8143-0eed0b1753ff.jpg", *required field // The second image of the process of the neural network "description":"Risk assessment: No health hazards identified. Benign skin neoplasm was detected. You should contact a dermatologist in case of damage to this neoplasm or with changes in its area. Once a year - scheduled monitoring by a dermatologist.\n\nProbable diagnosis: \n99% Benign nevus\n\nDiagnosis: after dermatoscopy\nTreatment: not required. observation\nAdvice: Scheduled visit to a dermatologist\n", *required field //Status description and recommendations for further steps "desease":"Benign formation", *required field // type of disease "error":null, "image_url":"https://cdn.skiniver.com/benign_nevus/ec834c8ae1a64194a5c8e9d548363676_226751224917.jpg", *required field //source image "masked_s3_url":"https://cdn.skiniver.com/masked/7/2/6e7fadbd-fc9a-4a64-ad36-c9923f8042ec.jpg", *required field //The first image of the process of the neural network "prob":"99", *required field //The probability of coincidence of signs of this disease "risk":"Low", *required field //Disease risk level "risk_level":"low", *required field "s3_url":"https://cdn.skiniver.com/benign_nevus/ec834c8ae1a64194a5c8e9d548363676_226751224917.jpg", *required field //second image of neural network "status":true *required field } |
Unique error:
error_code: 1 – Number of checks for this token has expired
error_code: 4 – Failed to load image
Field “class_raw” from predict = field “label” from get_disease_classes
An example of the process of a neural network in photos:
1. Source photo
2. Segmentation
3. Result
GET /get_disease_classes
URL: https://api.skiniver.com/get_disease_classes
Description:
Returns a list of categories with diseases
Curl:
curl –location –request GET ‘https://api.skiniver.com/get_disease_classes‘ \
–header ‘Authorization: token’’
Request
–header ‘Authorization: token’
–header ‘Locale: en’ /// “ru”, “en”
Response:
{ “categories”:[ *required field { “diseases”:[ *required field { “id”:”0″, *required field “label”:”comedone_closed”, *required field “name”:”Comedone closed” *required field }, { “id”:”1″, “label”:”rosacea”, “name”:”Rosacea” }, { “id”:”3″, “label”:”acne_pustular”, “name”:”Acne pustular” }, { “id”:”11″, “label”:”acne_cystic”, “name”:”Acne cystic” }, { “id”:”16″, “label”:”acne_vulgaris”, “name”:”Acne vulgaris” }, { “id”:”26″, “label”:”comedone_open”, “name”:”Comedone open” }, { “id”:”29″, “label”:”milium”, “name”:”Milium” } ], “title_name”:”Acne” }, { “diseases”:[ { “id”:”2″, “label”:”bouen”, “name”:”Bouen” }, { “id”:”9″, “label”:”seborrheic_keratosis”, “name”:”Seborrheic keratosis” }, { “id”:”13″, “label”:”lentigo”, “name”:”Lentigo” }, { “id”:”15″, “label”:”dysplastic_nevus”, “name”:”Dysplastic nevus” }, { “id”:”22″, “label”:”actinic_keratosis”, “name”:”Actinic keratosis” }, { “id”:”23″, “label”:”blue_nevus”, “name”:”Blue nevus” }, { “id”:”24″, “label”:”keratoakantoma”, “name”:”Keratoakantoma” } ], “title_name”:”Pre cancer” }, { “diseases”:[ { “id”:”4″, “label”:”hemangioma”, “name”:”Hemangioma” }, { “id”:”6″, “label”:”halo_nevus”, “name”:”Halo nevus” }, { “id”:”7″, “label”:”dermatofibroma”, “name”:”Dermatofibroma” }, { “id”:”12″, “label”:”benign_nevus”, “name”:”Benign nevus” }, { “id”:”17″, “label”:”papiloma_nevus”, “name”:”Papiloma nevus” }, { “id”:”27″, “label”:”pyogenic_granuloma”, “name”:”Pyogenic granuloma” }, { “id”:”28″, “label”:”spitz_nevus”, “name”:”Spitz nevus” } ], “title_name”:”Benign formation” }, { “diseases”:[ { “id”:”5″, “label”:”skin”, “name”:”No pathologies” } ], “title_name”:”No pathologies” }, { “diseases”:[ { “id”:”8″, “label”:”basal_cell_carcinoma”, “name”:”Basal cell carcinoma” }, { “id”:”14″, “label”:”lentigo_melanoma”, “name”:”Lentigo melanoma” }, { “id”:”20″, “label”:”squamous_cell_carcinoma”, “name”:”Squamous cell carcinoma” }, { “id”:”30″, “label”:”melanoma”, “name”:”Melanoma” } ], “title_name”:”Malignant formation” }, { “diseases”:[ { “id”:”10″, “label”:”molluscum_contagiosum”, “name”:”Molluscum contagiosum” }, { “id”:”18″, “label”:”wart_plane”, “name”:”Wart plane” }, { “id”:”19″, “label”:”papiloma”, “name”:”Papiloma” }, { “id”:”21″, “label”:”wart_plantar”, “name”:”Wart plantar” }, { “id”:”25″, “label”:”wart_vulgaris”, “name”:”Wart vulgaris” } ], “title_name”:”Virus” } ], “error”:null, “status”:true *required field } |
Skinive is currently doing the classification for the following diagnoses:
Benign
Pre-cancer
Skin cancer
|
Fungal Skin Diseases
Viral Skin Diseases
Papulo-squamous disorders
Acne
|